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Abstract
Inline Caching is an important technique used to accelerate
operations in dynamically typed language implementations
by creating fast paths based on observed program behaviour.
Most software stacks that support inline caching use low-
level, often ad-hoc, Inline-Cache (ICs) data structures for code
generation. This work presents CacheIR, a design for inline
caching built entirely around an intermediate representation
(IR) which: (i) simplifies the development of ICs by raising
the abstraction level; and (ii) enables reusing compiled native
code through IR matching techniques. Moreover, this work
describesWarpBuilder, a novel design for a Just-In-Time (JIT)
compiler front-end that directly generates type-specialized
code by lowering the CacheIR contained in ICs; and Trial
Inlining, an extension to the inline-caching system that al-
lows for context-sensitive inlining of context-sensitive ICs.
The combination of CacheIR and WarpBuilder have been
powerful performance tools for the SpiderMonkey team, and
have been key in providing improved performance with less
security risk.

CCS Concepts: • Software and its engineering→ Run-
time environments; Interpreters; Just-in-time compil-
ers; Dynamic compilers.

Keywords: inline caching, dynamically-typed programming
languages, just-in-time compilation
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1 Introduction
Throughout the extensive history of dynamically typed lan-
guages (DTLs) and their pursuit of efficient software exe-
cution, two fundamental techniques have proven their re-
silience: JIT compilation and inline caching.
JIT compilation can make computation more efficient by

leveraging dynamic information to compile language meth-
ods, or traces, into native code at runtime. Inline caching
can reduce the cost of polymorphic operations (e.g. method
dispatch and operators) by creating a cache directly asso-
ciated with a particular call-site or operator instance. The
original design of inline caching relied on the observation
that operation sites may be polymorphic in principle, but
were typically monomorphic in practice [12]. Later, inline
caches were extended to sites that are polymorphic but have
a limited number of frequent targets [16]. In most software
stacks for dynamically typed languages, inline caching is an
integral part of the JIT code generation process.
To illustrate the inline-cache mechanism, consider a bi-

nary + operator. A particular x+y expression can represent
many operations such as string concatenation, list append-
ing, floating-point addition, or other operations, depending
on the language semantics. The computation that must be
performed when this expression is evaluated depends on the
type of the operands. A naive system would invoke a virtual-
machine routine each time that the expression is evaluated to
ensure that the correct operation is performed, but this could
lead to poor performance if that particular expression always
resolves to the same computation. Alternatively, a system
that supports inline caching for + resolves a x+y expression
by (i) identifying the types of x and y, (ii) constructing a fast
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path conditioned on those types, and (iii) saving the condi-
tioned fast path in an inline cache. On subsequent visits to
the same x+y expression, the system consults the cache and
takes the fast path if the incoming operand types agree with
the cached operand types. This system avoids the slow path
subsequently so long as the types are the same.

There are various possible representations for inline caches.
Early representations tended to include branches in the emit-
ted JIT compiled code that could be patched by the runtime
system [12, 16, 17]. In V8, polymorphic inline caches are
represented as a table of tuples containing a mapping from
runtime type to native handler code [2, 11]. In SpiderMonkey,
and other projects such as GraalVM [20], ICs are represented
as chains of type-specialized fast paths [1]. Each fast path in
SpiderMonkey is a stub, which is a data structure associated
with a small sequence of native code referred to as the stub
code. Each stub code sequence contains a fast implementa-
tion that is specialized to an observed operand type for the
associated operation.

SpiderMonkey is unique in its adoption of CacheIR, a byte-
code intermediate representation (IR) for inline cache stubs.
In SpiderMonkey, using CacheIR makes creating IC stubs
akin to compiling small methods in a JIT. When attaching
a stub, SpiderMonkey creates a representation in this spe-
cialized IR and compiles the IR representation to match the
appropriate calling convention to deploy the IC.
This paper reports on the advantages created through

the adoption of an intermediate representation for inline
caching, including: (i) the simplification of adding new ICs,
which increases the productivity of compiler developers,
and (ii) the creation of a novel JIT compiler design that can
consume the inline cache IR directly as part of the JIT com-
piler IR for a method that naturally creates opportunities
for type specialization in the JIT compiler. This strategy is
adopted in the front-end of SpiderMonkey’s top-tier JIT com-
piler where bytecodes that have a single IC stub have their
CacheIR directly lowered into a JIT compiler IR sub-graph.
This architecture has been very successful at Mozilla and,
with an extension called Trial Inlining, has outperformed Spi-
derMonkey’s previous JIT compiler system when evaluated
on workloads representative of deployed Web applications.

2 Making JavaScript Fast
Implementing JavaScript in a performant manner is a chal-
lenge because it is a dynamic language. To address this chal-
lenge, numerous techniques have been adapted and inno-
vated to create fast and efficient JavaScript implementations.

2.1 Inline Caching: Dynamically Creating Fast Paths
Inline caching was initially proposed by L. Peter Deustch
and Allan M. Schiffman to accelerate method invocation on
dynamically typed objects in the Smalltalk-80 system [12].
For instance, the code o.x sends a message x to a receiver

object o. Many different methods named x could be invoked
depending on the runtime types of the object o. To avoid ex-
ecuting an expensive lookup routine each time the program
evaluates o.x, the address for the previously resolved method
is cached inline to accelerate subsequent invocations of x
when o is of the same type. Initially, the method call is bound
to the address of the default method-lookup routine; the fall-
back case. When the lookup routine resolves an address, it
overwrites the fallback address to provide a fast path for o’s
type. On later evaluations of the same o.x expression, o’s
type is checked against the type corresponding to the cache.
If the type is the same, the fast path is taken, otherwise,
the fallback path is taken and the call site is bound to the
newly resolved method address. This IC scheme improved
the Smalltalk-80 system greatly but was limited because it
provided a fast path for only a single type for each static
expression o.x.

Recognizing that languages such as SELF [10] often have
more frequent polymorphic method invocations, Urz Hölze,
Craig Chambers, and David Ungar introduced Polymorphic
Inline Caches (PICs) to accelerate the operation sites that
observe up to ten types [16]. For polymorphic sites, instead
of embedding the resolved method address directly into the
native code, the system embeds the address of a created
stub that guards on previously observed types in a switch-
statement-like manner and executes the associated method.
If no guards pass, a PIC invokes the fallback method and
appends a new guarded fast path within the stub.
These seminal approaches established the concepts of

guards and fallback paths for ICs. Guards are conditional
branches that ensure the correctness of fast-path execution
based on observed types. A fallback path is a routine that is
executed to ensure that types previously unseen are handled
appropriately. Modern dynamically-typed language imple-
mentations, such as SpiderMonkey, V8, and JavaScriptCore
(JSC) JS engines, use a variation of this PIC technique to
accelerate many operations.

2.2 JS Object Models: Shapes and Slots
One of the main features shared between SELF and JS imple-
mentations that enable the use of PICs is the shape1 repre-
sentation of objects. Every object has (a) a shape that repre-
sents the layout of that object in memory, and (b) slots that
hold actual values. Each shape represents a mapping from
property-name strings to the slots where the properties can
be found within the object, and shapes are shared amongst
objects that have the same mappings. Shapes are immutable;
if a property is added to an object, then a different shape
needs to be associated with the object. If an existing shape
matches the new mapping, that shape is associated with the
object. If no existing shape is found, then a new shape with
the correct set of properties is created and associated with

1Called Hidden Classes in V8 and Structures in JSC.
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the object. Because shapes are immutable, objects with the
same shape can be handled similarly and operate under the
same assumptions. For PICs, this immutability allows for
shapes to be used in guard conditions – comparing shapes
– to select the appropriate fast path through cached code
or execution of the fallback path. The JS engines also ex-
ploit an insight from the work by Hölzle et al.: not only do
PICs accelerate polymorphic operation sites, but they also
provide a rich collection of per-site type information. This
type information can be leveraged by the runtime system to
enable optimizations such as speculative compilation of hot
functions that exhibit function-wide type stability.

2.3 Multiple Execution Engines Within an
Implementation

To maintain quick start-up times while supporting robust
optimizations for hot code, JS engines employ tiered compila-
tion strategies, changing the execution-engine running code
dynamically. This Section provides context about JS engine
design through a discussion of the optimization and code-
generation strategy in SpiderMonkey, the JS VM that powers
Firefox and is the JS embedding of MongoDB, CouchDB, and
GJS among other projects. Other high-performance JavaScript
engines have similar designs.

2.3.1 Tiered Interpretation andCompilation. Optimiza-
tion pipelines for modern JS engines typically operate on an
executable program segment — such as a function, module,
or eval. In SpiderMonkey, JS source text is compiled, at run
time, into a set of internally used scripts, each correspond-
ing to an executable body. Initially, scripts are compiled to
a stack-based VM bytecode, but, throughout execution, a
script may gain additional representations when transition-
ing between four different execution engines (Figure 1):

• Interpreter: For the first few invocations of a script,
SpiderMonkey uses a threaded, single-bytecode inter-
preter implemented in C++.

• Baseline Interpreter: The next tier is a JIT-compiled
interpreter that is created at process startup. This Base-
line Interpreter starts collecting bytecode operand-
type information by compiling and using ICs for sup-
ported bytecode operations. Allowing the Baseline
Interpreter to use ICs results in larger performance
gains over the Interpreter.

• Baseline JIT: After sufficient execution in Baseline
Interpreter, a script may be compiled by the Base-
line compiler, a template JIT compiler that stitches
together native code sequences for each bytecode. For
IC-supported operations, Baseline directly emits a call
to the compiled IC code. Most of the ICs that were pre-
populated while the code already ran in the baseline
interpreter continue to be used in the baseline version
of the function.

Interpreter

Baseline Interpreter

Baseline Compiler

Warp Compiler

10 Executions

1500 Executions

100 Executions

Bailout

Figure 1. SpiderMonkey’s execution tiers and transition
conditions. These counts can also be incremented on loop
back-edges, and thus state transition can also happen earlier
than an execution count suggest. SpiderMonkey supports
tiering up in the middle of a long-running loop through On-
Stack Replacement.

In the Baseline JIT, ICs are the only form of opti-
mization, other than the dispatch reduction from the
template-JIT style compilation including simple regis-
ter allocation. The use of ICs is sufficient to provide a
substantial performance boost compared to the inter-
preter.

• Warp and Ion: For frequently executed scripts, a ver-
sion is compiled by Warp and Ion, SpiderMonkey’s
optimizing compiler pipeline. Warp parses bytecode
to produce a high-level intermediate representation,
MIR, which is optimized and lowered into a low-level
IR, LIR. Using MIR and LIR, Ion performs a collec-
tion of standard compiler optimizations such as Global
Value Numbering [7], Dead Code Elimination, Scalar
Replacement[9], and efficient register allocation and
code generation. Ion is a type-specializing, speculative
compiler that produces executable bodies optimized to
observed types whose information is stored within ICs
and communicated through the execution tiers. If the
speculation fails, Ion-compiled script bodies bailout to
the Baseline Interpreter tier, restoring sufficient state
to resume execution. If there are too many bailouts
from Ion then the script is invalidated, setting the stage
for recompilation under a new set of assumptions.

2.3.2 Inline Caches: A List of Stubs. SpiderMonkey’s
ICs are associated directly with a specific bytecode in a script.
All ICs are polymorphic. Structurally, each IC has a linked
list of stubs2, a State structure — which contains the number
2The code for an inline cache is not actually inlined in memory. The name
is preserved because they are in-line in a logical sense, in spite of their
out-of-line code organization.
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1 class InlineCacheStub {
2 NativeCode* stubCode; // Native Code
3 uint32_t enteredCount; // Jumps to stub
4 InlineCacheStub* next; // Next stub
5 StubInfo* stubInfo; // Metadata
6 }� �

Figure 2. SpiderMonkey’s in-code representation of an IC
stub.

of stubs, the mode (see Section 3.1.2 ), and Trial Inlining state
(see Section 4.2). Stubs are heap-allocated data structures
consisting of a pointer to native code, a counter incremented
when the stub is entered, a pointer to the next stub in the
chain, and an associated metadata structure containing in-
formation such as a pointer to the stub’s IR (see Section 3)
and the data on which the stub operates.3 Figure 2 shows an
in-code representation of an IC stub.
Initially, an IC consists of a fallback stub that invokes

a fallback handler — sometimes called the lookup method
in the literature. The fallback handler computes the return
value and tries to attach a new specialized IC stub for the
observed inputs. The temporal-locality property states that
recently used data are likely to be used again soon. Thus, the
newly attached stubs are prepended to the IC chain so that
the most recently added stubs are tried first.

Correctness requires that, regardless of the structure used
to implement an inline cache, ICs must preserve the seman-
tics in the original bytecode: all results — and side effects — of
the interpretation of the original bytecode, must be the same
as if the bytecode were interpreted. There is freedom in how
this result is accomplished. Since ICs are type-specialized fast
paths, in some implementations, such as SpiderMonkey for
example, more complex ICs can even replace function calls
with the effects of that call – effectively inlining the call, even
in the Baseline interpreter execution tier. In SpiderMonkey,
inlining is limited to calls to native (C++ implemented) code,
but this covers many important use cases such as pushing
elements into, or popping from, an array.

3 CacheIR: A Linear Bytecode for Inline
Caches

CacheIR is a simple typed bytecode specialized for compiling
inline caches. CacheIR bytecode is ‘linear’ in that it has only
two control-flow primitives:

• Guards: Instructions that verify a stub invariant, pre-
venting the execution of the stub if the guard does not
hold.

• Return: A single bytecode that returns from the IC
stub code.

3A detailed description of the setup appears in the SpiderMonkey source
code https://searchfox.org/.

� �
1 GuardToObject InputId0 --> ObjId0
2 GuardShape ObjId0 , Field0
3 LoadFixedSlotResult , ObjId0 , 8
4 ReturnFromIC
5 --Stub Fields ---
6 Field0: Shape 0xabcdef0123� �

Figure 3. An example of CacheIR for an object property
read: obj.prop

Containing no other control flow instructions, a CacheIR
sequence is akin to an extended basic block [18]. Each IC has
a single entry point, has multiple exit points through guard-
failure paths and the return operation. Once the execution
passes all the guards, every instruction in the IC executes
once in order.

CacheIR bytecodes operate on typed Operands, which are
either input values or the return value of a CacheIR bytecode
operation. The number of implicit input operands in the
CacheIR for an IC is determined by the arity of the bytecode
to which the IC is attached. For an IC attached to a bytecode
that produces a value, the CacheIR has an output operand
for that value as well. In addition to operands, CacheIR stubs
have stub fields, which are values associated with and used
within the stub. For Baseline ICs, stub fields facilitate the
sharing of native code for stubs that are identical except
for offsets and pointer values, and simplify the process of
integrating stubs into the garbage collector.
Figure 3 shows an example of a CacheIR illustrating

guards, operations, and stub fields. The GuardToObject op-
eration is an example of a guarded cast; either the input
is of Object type, producing a new Object typed operand,
or the guard condition fails and control is given to the
next stub. The GuardShape operation tests if the object-
operand’s shape matches the shape stored in the stub field.
LoadFixedSlotResult loads a value out of the fixed slot at
offset 8 in the object4, placing the result into the implicit
result register (hence the Result suffix).
Currently, SpiderMonkey’s CacheIR has more than 300

CacheIR instructions, including 64 guard conditions, cover-
ing a large number of behaviours inside the engine.Moreover,
the IR’s simplicity enables a straightforward implementation
path to add support for further operations.

3.1 Generation of CacheIR
CacheIR is generated in the fallback path for an IC miss.
While details vary slightly, the fallback handler logic gener-
ally follows these steps: (i) compute the result for the current
operation; (ii) invoke the appropriate CacheIR IR Generator
— this generator analyses the input values, opcode, and result-
ing value, and uses a simple hand-crafted pattern matching

4This slot was determined during the generation of this cache and is correct
because of the previous shape guard.
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code to instantiate a matching sequence of CacheIR opera-
tions that handle the input values; (iii) generate native code
from the sequence of CacheIR operations; (iv) attach the
resulting stub to the front of the IC chain.

3.1.1 Raised Abstraction == Higher Productivity. Lan-
guage runtime development must focus on performance im-
provement. Sometimes a performance cliff can be eliminated
by designing the engine to generate specialized code for
specific cases. SpiderMonkey, for example, often generates
specialized code by adding support for a specific case in the
inline cache generator. For instance, consider an illustrative
example: Assume that a performance analysis determines
that an important site often performs arithmetic with null.
Such operations are unexpected and thus are not handled
by the default IC generation policy. CacheIR simplifies the
process of inserting an IC to generate specialized code for
the execution of operations such as a + b where either a
or b is null, leading to performance improvement in this
example.
Adding such support often only requires a modification

to the existing Binary Arithmetic CacheIR generator5 that
adds a case to emit the correct CacheIR, as shown in Figure 4.
The general-shape CacheIR generation pattern matches the
actual results that the fallback stub observed when running
the operation (lines 2-9), and then generates CacheIR that
provides a fast path for the specific observed case (lines
17-21). In some cases, correct handling may require adding
a CacheIR operation. In SpiderMonkey, adding a CacheIR
operation requires a modification of an operator descrip-
tion file, and code generation for that operation through a
platform-independent MacroAssembler.
By adding support to the CacheIR generator, we’ve also

added support for specializing this operation to Warp, as-
suming the CacheIR operations are all successfully handled
by Warp.

Working with CacheIR raises productivity for writing ICs
in other ways as well. CacheIR has a simple register allocator
to allow managing values inside of caches. Furthermore,
CacheIR also automatically creates the failure paths required
to restore the input registers to their original values on failure
allowing every stub in the IC chain to start from the same
state.
Using an Intermediate Representation for inline caches

also eases the development of tooling to analyze the be-
haviour of inline caches because a structured machine-
independent representation is appreciably easier to investi-
gate than generated native machine code.

3.1.2 Stub Generation Policies: Avoiding Pathological
Outcomes. Each IC chain has some associated state: the
number of stubs attached, and amode. There are three modes,
coarsely characterizing observed type history for an IC chain:

5Used for infix binary operations.

� �
1 AttachDecision BinaryArithIRGenerator ::

tryAttachNullInt () {
2 // Only Handle Add
3 if (op_ != JSOp::Add) {
4 return AttachDecision :: NoAction;
5 }
6 // Only handle LHS null RHS int32.
7 if (!lhs_.isNull () || !rhs_.isInt32 ()) {
8 return AttachDecision :: NoAction;
9 }
10
11 ValOperandId lhsId(
12 writer.setInputOperandId (0));
13 ValOperandId rhsId(
14 writer.setInputOperandId (1));
15
16 // null + int32rhs = int32rhs
17 writer.guardIsNull(lhsId);
18 Int32OperandId rhsIntId =
19 writer.guardToInt32(rhsId);
20 writer.Int32Result(rhsIntId);
21 writer.returnFromIC ();
22 }� �
Figure 4. A simplified fictional example of the CacheIR gen-
eration process for a null + int opportunity

SPECIALIZED MEGAMORPHIC

GENERIC

Exceed maximum stub attaches

Exceed maximum stub attach failures

Figure 5. SpiderMonkey’s IC modes and transition criteria.

1. Specialized: In this mode, the CacheIR generators at-
tempt to create stubs that are tightly specialized to the
observed values, but can only handle specific, tightly
guarded cases. For example, a specialized stub for a
property read has a guard on the receiver being an ob-
ject and a guard on the object’s shape (as in Figure 3).

2. Megamorphic: In this mode, the CacheIR generators
create stubs that are not as type specialized as Spe-
cialized stubs. Often this involves creating a stub that
calls a routine in the VM runtime, which is slower than
a Specialized stub, but still faster than interpretation.
For a property read,Megamorphic stubs guard on the
receiver being an object before calling a VM routine
to produce the result via a lookup in a global property
cache.

3. Generic: In this mode, stub attachment is disallowed,
and a call to a VM runtime routine will simply provide
the result value without attempting to attach a stub.
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Each IC chain is initially Specialized, from which point
it may either (i) remain Specialized, (ii) transition toMeg-
amorphic, or (iii) transition directly to Generic. When the
IC chain transitions from one mode to another, it discards all
the currently attached stubs other than the fallback stub. As
shown in Figure 5, an IC chain transitions from Specialized
to Megamorphic when it exceeds the maximum number of
attached stubs that are allowed for a specialized IC chain.
The goal of this limit is to prevent the creation of long chains
of stubs whose traversal may cause high overhead. Each IC
chain also keeps track of the number of times a fallback stub
has been reached and fails to attach a stub. Failure to attach
any stub can happen because JavaScript is an extremely dy-
namic language with a large number of possible behaviours,
many of which are effectively never seen in practice. As a
result, optimization effort is typically focused on observed
patterns, leading to rare combinations of operations lack-
ing IC support. In addition, there is a maximum number of
failures-to-attach that the stub chain will tolerate; when that
is hit, the stub chain transitions to Generic mode to avoid
wasting further resources on attempting to attach new stubs.

3.2 Compilation of CacheIR into Native Code
SpiderMonkey has two CacheIR compilers: one compiler
shared by Baseline Interpreter and Baseline, called the Base-
line CacheIR Compiler, and one specialized to Ion — Spider-
Monkey’s top-tier compiler used only for the hottest scripts
— called the Ion CacheIR Compiler. The two compilers share
a considerable amount of engine code but are specialized to
the required calling convention of the target IC system. Each
compiler also adopts a different policy for the handling of
Stub Fields.

The Baseline CacheIR compiler handles stub fields by gen-
erating native code that loads the values out of the stub meta-
data. The Ion CacheIR compiler adopts a policy of directly
embedding stub field values in the IC stub code. Field-value
embedding makes Ion IC stub code ineligible for sharing but
requires less indirection, and thus Ion ICs ultimately execute
faster than Baseline ICs. The Baseline CacheIR compiler’s
approach is slightly less performant than Ion’s approach but
has the benefit that caches with the same CacheIR that differ
only in the values of their stub fields can share native code.
Stub code sharing dramatically reduces the amount of native
code required by Baseline ICs, saving memory and the time
required to generate native code when stubs can be shared.
Furthermore, stub code sharing also avoids manipulating
page tables to mark pages as executable — a major cost of
dynamic code generation.

Both CacheIR compilers use a simple register allocator to
track where each operand is during execution — in a register,
in a stack slot, on the language stack, etc. This register alloca-
tor can provide extra registers to caches where required. If a
guard fails, the IC needs to restore the input registers to their
original values, allowing the next stub in the chain to start

in a known state. The register allocator has the information
that it needs to generate these failure paths automatically.
Failure paths are shared between guard instructions if the
register state has not changed between the guards.

4 WarpBuilder: Consuming CacheIR
Directly as Type Feedback

WarpBuilder, a front-end for the Ion Compiler, converts byte-
codes intoMIR and was built around the insight that CacheIR
provides an excellent source of type information for an opti-
mizing compiler.
It replaces a component called IonBuilder, which used a

hybrid Type Inference (TI) system, proposed by Hackett et
al., that uses both static-analysis and run-time-collected type
information to infer facts about object types and shapes [15].
The TI system allows for complicated reasoning about ob-
jects and nested property accesses. However, its power came
at a cost: Type Inference consumed memory to power op-
timizations which could only occur once functions made
it to top-tier compilation, but an even larger cost was the
engineering costs associated with TI.

To be sound, the TI system needed information to be cor-
rectly propagated throughout the engine, which meant that
TI code was necessary for many parts of the engine. More-
over, any failure to properly maintain type data could lead
to security problems because the Ion optimizing compiler
would consult the TI system and use the provided invari-
ants to elide checks that would otherwise be necessary. This
lookup mechanism was particularly pernicious because erro-
neous handling of a value in one place could be exploitable
by code very far away, as a result of the poisoning of the
global analysis.
In WarpBuilder, type data is exclusively sourced from

the inline caches generated as part of lower-tier executions,
and the consumption of that type data is local to the MIR
for a particular bytecode. WarpBuilder can precisely build
specialized code by directly compiling the CacheIR for an
eligible stub to MIR, converting guard failures to bailouts.
With this compilation strategy, the MIR code is immediately
specialized to the observed types in the program, and those
type checks are made visible to the Ion optimizer. The opti-
mizer re-orders them and eliminates redundancy to further
optimize the code. Furthermore, complex ICs with compli-
cated guard conditions do not require more complex analysis
glue code in WarpBuilder to take advantage of stored types
– Warp builds guards correctly and automatically for any
CacheIR instructions that it compiles.
Compared to IonBuilder it is an appreciably simpler ap-

proach, eliminating the requirement for globally correct rea-
soning, and limiting the scope of impact for erroneous code.
Moreover, using CacheIR for ICs in lower tiers is a perfor-
mance optimization that provides direct value, whereas track-
ing TI information is pure overhead before tiering up to the
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Figure 6. A diagram of the CacheIR powered transformations in SpiderMonkey

Ion compiler. Therefore, WarpBuilder also provides improve-
ment over IonBuilder on memory consumption, startup time,
and flat code profiles.

4.1 The Compilation Pipeline
The WarpBuilder compilation process is split into three
phases:

Phase 1: Snapshot Building. At the start of top-tier com-
pilation a WarpOracle creates a snapshot of information,
including the CacheIR stub information for the script. The
WarpBuilder uses this snapshot to generate MIR.

Adopting this snapshot-generation process allows the re-
mainder of theWarp compilation to be executed in a different
thread from the main thread. This latency optimization is
important because the main thread performance is extremely
performance-sensitive in a production JS engine.

Phase 2: MIR Generation. In a separate thread, the Warp-
Builder uses the bytecode and the WarpSnapshot, to create

MIR. During this phase, when a bytecode that supports ICs
is encountered, Warp can do one of the following:

1. If the IC has multiple active stubs, Warp emits code
that constructs and uses an Ion IC chain.

2. If the IC has only a single stub attached, or has only
a single active stub at the front of the IC chain, then
Warp lowers6 that stub’s CacheIR to MIR and inline.

3. If no IC stubs are attached, Warp generates an uncon-
ditional bailout, thus enabling speculative dead code
elimination while maintaining appropriate handling if
that speculation is false.

Stub lowering is the relatively straightforward process
of converting the sequence of CacheIR ops in the stub into
equivalent MIR nodes. Rather than jumping to another im-
plementation or stub, Guard instructions are lowered such
that a guard failure results in a bailout with the execution
continuing in the Baseline Interpreter.

6This step is referred to as transpilation in the source code.
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Previous work used inline caches to drive optimization by
taking advantage of the insight that inline caches capture
exactly the set of run-time observed types at a particular
bytecode [17]. However, unlike previous work that simply
refined types using the data contained in ICs, SpiderMon-
key lowers CacheIR and is able to generate specialized code
in Warp without the engineering cost of writing, yet again,
type-specialization code for the Ion Compiler, thus allowing
for direct fast-path code generation. Warp also does not need
to analyze the semantics at the level of source language be-
cause lowering CacheIR to MIR is a mechanical translation
— each CacheIR operation is lowered to a predictable MIR
node. A lowering pipeline for a CacheIR operation is reused
between different kinds of ICs. For example, for a Guard-
Shape CacheIR operation, the pipeline is defined once and
used in any operation backed by an IC that needs to guard
on an object’s shape.

Phase 3: Optimization and Code Generation. The MIR
is then optimized by the Ion optimizer, lowered into LIR, and
compiled into native code.

4.2 Trial Inlining
True monomorphism is highly desirable because it allows for
tightly specialized code generation and provides a reasonable
basis for making type-based assumptions in the compilation
pipeline. ICs must reflect, as accurately as possible, the ex-
pected set of types during Warp compilation because type
specialization is handled by IC analysis. An obvious chal-
lenge is how to handle the inlining of functions that may
be polymorphic across the program, but monomorphic in a
particular calling context (see Figure 7).
To handle this case, the SpiderMonkey team developed

Trial Inlining – a kind of context-sensitve profiling driven by
CacheIR. Trial Inlining allows the Baseline compiled code to
associate distinct sets of ICs to distinct call sites that call the
same function. After Trial Inlining, each set of ICs uses the
CacheIR system to collect type information local to the call
site that the set is associated with. Therefore, if Warp inlines
that call, it can create type-specialized code for that call site,
handily exploiting local monomorphism. Trial Inlining can
nest within another Trial Inlining, further specializing code
of calls within the Trial Inlined calls7.

5 CacheIR and WarpBuilder Evaluation
The evaluation of CacheIR andWarp in this Section supports
that: (i) CacheIR is a useful abstraction for developing inline
caching systems; and (ii) CacheIR enables the development
of a JIT compiler that has a simple high-level design that
delivers excellent performance. .

7To avoid unbounded memory consumption, however, nesting is limited to
a maximum inlining depth of 4.

� �
1 function adder(a,b) {
2 return a+b;
3 }
4
5 function strings () {
6 var str = "";
7 for (var o of ["a","b","c"]) {
8 str += adder(o,",");
9 }
10 return str;
11 }
12
13 function numbers () {
14 var n = 0;
15 for (var o of [1,2,3]) {
16 n += adder(2,o);
17 }
18 return n;
19 }� �
Figure 7. An example of local monomorphism: the Add op
within adder may operate either on strings or on integers;
however, within each call context the types that reach the
Add are monomorphic.

5.1 Benchmarks, Hardware, and Software
Data presented in this section was collected from a machine
that runs Fedora 36 (Kernel 5.18.11-200) and is equipped
with an Intel i5 12400 16 GiB of DDR4 memory. Moreover,
this section uses Speedometer 2.1 – Speedometer – and
JetStream 2.1 – JetStream – benchmark suites to evaluate
performance, Speedometer as a proxy for real-world work-
loads, and the AreWeSlimYet (AWSY) [4] tp6 benchmark to
evaluate memory consumption.

Speedometer contains 16 subtests, all of which are To-Do
list applications written in different popular JavaScript
frameworks like React, React with Redux, Ember.js, Back-
bone.js, AngularJS, Vue.js, jQuery, Preact, Inferno, and Flight.
These frameworks are ubiquitously used in Web develop-
ment and Speedometer is meant to reflect real-world Web-
App workloads by conducting operations on a To-Do list
both synchronously and asynchronously. To characterize
performance, Speedometer computes a final score:

6000
geomean(medians) ∗ correctionFactor (1)

where medians is the set containing a value for each subtest,
computed by the median run time in milliseconds across
all iterations; and correctionFactor is a scalar value used to
scale down the final score. Faster subtest run times — smaller
geometric mean values — increase the final score.
JetStream contains 64 subtests evaluating computation-

ally intensive workloads.8 On each invocation of JetStream,

8A full list is found here: https://browserbench.org/JetStream2.1/in-
depth.html

41



CacheIR: The Benefits of a Structured Representation for Inline Caches MPLR ’23, October 22, 2023, Cascais, Portugal

each subtest runs for 120 iterations and computes a score
value:

subScore𝑖 =
5000
time𝑖

(2)

where time𝑖 is the time in milliseconds to complete the 𝑖𝑡ℎ
iteration. JetStream computes a single score across all iter-
ations for each subtest 𝐵:

score𝐵 = geomean(firstIteration𝐵,worstFour𝐵, average𝐵)
(3)

where firstIteration𝐵 is subScore0; worstFour𝐵 is the arith-
metic mean of the lowest four subScore values; and average𝐵
is the arithmetic mean across all iterations. To characterize
overall performance, JetStream computes a final score:

geomean(scores) (4)

where scores is the set containing the score𝐵 values for each
subtest.

AreWeSlimYet is a project maintained by Mozilla to track
memory usage across Firefox builds. The tp6 test automates
opening browser tabs and loading popular Web pages to
simulate common user behavior. AWSY collects memory us-
age statistics that discriminate between sources of memory
consumption. This evaluation focuses on the memory us-
age attributed to the SpiderMonkey JavaScript engine. Each
memory usage value is the geometric mean across all itera-
tions – in this evaluation 15 – of an AWSY run.

5.2 Experimental Methodology
The results presented throughout this section use Mozilla’s
mach tool with the raptor subcommand to collect bench-
mark metrics for Speedometer, JetStream, and the
awsy-test subcommand to collect metrics for AWSY.
Each data point in the figures represents the metrics de-
scribed above computed from 15 mach invocations for both
Speedometer and JetStream.

5.3 Execution Engines, Inline Caches and Their
Impact on Performance

Figure 8 examines the performance contribution of various
execution engines on Speedometer and JetStream. The
speedup factor of each tier is calculated over the lowest tier
in the engine, the C++ Interpreter, which is a simple inter-
preter loop and has no support for inline caching. Enabling
higher optimizing tiers leads to better performance for both
benchmark suites. At the Baseline Interpreter tier, Speedome-
ter and JetStream observe a 1.63× and 1.95× improvement
respectively, directly as a result of the CacheIR system. By
exploiting and refining CacheIR information collected in the
Baseline Interpreter, the Baseline Compiler further increases
performance by 1.5× and 1.75×. Finally, when Warp special-
izes and optimizes native code by lowering the CacheIR, it
increases performance by another 13% and 2×.
To show the value of CacheIR to each tier, Figure 8 pro-

vides three synthetic tiers where CacheIR’s contribution to

Figure 8. Per-tier benchmark score improvement over the
C++ Interpreter tier. Tiers marked with a * signify that
CacheIR is disabled. Warp† represents disabled CacheIR low-
ering.

each tier was removed. The * in the Baseline Interpreter* and
Baseline Compiler* tiers indicates that CacheIR is disabled
engine-wide. The † represents that only lowering CacheIR
in Warp is disabled – in this synthetic tier, Warp compiled
function bodies generate inline caches powered by CacheIR,
but are devoid of type information provided by CacheIR
lowering.

The results highlight how much the design of SpiderMon-
key leans on the CacheIR system: CacheIR is the most im-
portant feature to improve performance within the engine.
Without inline caching the Baseline Interpreter has high
overhead because it spends enough time jumping between
JIT and C++ code that it is slower than the C++ interpreter
in both benchmarks. The Baseline Compiler, which should
derive some benefit from the reduction of dispatch overhead,
shows relatively little benefit over the Baseline Interpreter
for very similar reasons.
The disparity between Warp’s ability to improve bench-

mark performance on JetStream and Speedometer reflects
that a compiler’s ability to improve performance is workload-
dependent. JetStream has computationally intense kernels
that benefit from fine-grained, top-tier, optimizations and
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Table 1. Top ten CacheIR sequences for Baseline ICs with re-
spect to the number of occurrences when running Speedome-
ter. As examples, Listings 1 and 2 display the two most com-
mon sequences. A scripted function is backed by bytecode —
in contrast with a Native function that is a JavaScript func-
tion backed by C++.

Operation Occurrences

ToBool(Boolean) 57554
Scripted function dispatch 46264
Load from an object’s fixed slot 42629
Load from an object’s dynamic slot 28899
Load from a prototype’s dynamic slot 26911
Store to an object’s fixed slot 15487
Null value check 14933
Integer comparison 12820
ToBool(Object) 12464
Get global name 11139

it delivers a 2× improvement over the Baseline Compiler.
Anh et al. observe that top-tier compilers improve the per-
formance of real-world code much less than computational
kernels would suggest [5]. Given that Speedometer is de-
signed to better reflect the flatter profiles of real-world code,
Warp’s results on Speedometer concur with Anh et al.’s
observation, providing a more modest speedup of around
13% over the Baseline Compiler.

5.4 CacheIR: Simplifying IC Development and
Enabling Stub Code Sharing

CacheIR makes it easier to develop inline caches for Firefox
and can handle a diverse number of cases with relative ease.
As a result, running Speedometer and JetStream generates
437 and 531 distinct CacheIR strings respectively, each cov-
ering a different case observed in the benchmark run. These
are 437 and 531 specialization cases whose CacheIR strings
can be forwarded to Warp and lowered throughout the com-
pilation pipeline, massively reducing the complexity of the
compiler design required to achieve excellent JavaScript per-
formance.

The diversity of cases covered also helps explain the mag-
nitude of increase provided by CacheIR for Baseline Inter-
preter performance in Figure 8. CacheIR improves perfor-
mance even without traditional JIT compilation because it
optimizes a large number of diverse cases with native code.
A major strength of the CacheIR design is that it makes cov-
ering a new important case with an inline cache both perfor-
mant and easy. Thus, the SpiderMonkey team has managed
to cover a broad range of cases, improving the performance
of every tier above the C++ interpreter with one action.

In addition to providing a modular IR to share with higher-
tier compilers, CacheIR also enables native stub code sharing

Listing 1. First most common CacheIR sequence: Converting
a Boolean stored variable to a boolean result.� �
1 GuardNonDoubleType inputId 0,
2 type Bool
3 LoadOperandResult inputId 0
4 ReturnFromIC� �

Listing 2. Second most common CacheIR sequence: Calling
a specific Scripted function.� �
1 LoadArgumentDynamicSlot resultId 1,
2 argcId 0,
3 slotIndex 1
4 GuardToObject inputId 1
5 GuardSpecificFunction funId 1,
6 expectedOffset 0,
7 nargs&FlagsOffset 8
8 CallScriptedFunction calleeId 1,
9 argcId 0,
10 flags ,
11 argcFixed N
12 ReturnFromIC� �
by mapping CacheIR sequences to native stub code. In the
Baseline tiers, each CacheIR sequence is compiled to na-
tive code once, then each IC stub with the same CacheIR
sequence holds a pointer to the compiled code. Table 1 il-
lustrates the occurrence count for the top 10 most common
CacheIR sequences for Baseline IC stubs in Speedometer.
The first and second most common sequences are shown in
Listing 1 and Listing 2. Native code corresponding to the
CacheIR sequences in these listings is shared between 57, 554
and 42, 692 Baseline IC stubs, respectively. By eliminating
redundant code compilation for different ICs, CacheIR’s de-
sign significantly reduces the memory footprint required to
support the inline caching system (Section 5.5.1).

5.5 WarpBuilder: Exceeding IonBuilder Performance
This section presents a performance evaluation from Firefox
83, the release where WarpBuilder was enabled by default.
Firefox 83 is used as a baseline to show what a relatively
unoptimized, proof-of-concept version of Warp is capable
of delivering. Furthermore, it was the last release where a
runtime switch was available to toggle between the old Ion-
Builder compiler frontend (and associated Type Inference
system) and the WarpBuilder frontend with the Type Infer-
ence system disabled.

5.5.1 Memory Consumption. As part of the design of
WarpBuilder, there are two major sources of potential mem-
ory savings: (i) removing the need to track and store global
type inference to support the TI system in IonBuilder, as
discussed in Section 4; and (ii) stub code sharing, discussed
in Section 3.2, meaning that Baseline stubs with identical
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CacheIR can share native code. Enabling WarpBuilder re-
duces memory consumption to 0.91× that of IonBuilder for
the AWSY tp6 test suite running on Firefox 83.

5.5.2 Benchmark Performance Evolution. Since the
release of Firefox 83, further engineering and tuning has
greatly improved the WarpBuilder system. To characterize
these improvements, this evaluation contrasts the perfor-
mance results of Firefox 83 and Firefox 111 in Figure 9 on
Speedometer and JetStream.

Figure 9. Results from running Firefox with WarpBuilder
and with IonBuilder for the Speedometer and JetStream
benchmark suites. Each horizontal bar is labeled with the
Firefox version number and characterizes the mean score
of 15 runs containing the 95% interval as an error. A higher
score is better.

For Speedometer running on Firefox 83, enabling Warp-
Builder improves the score to 1.15× that of IonBuilder. The
improvements on Speedometer stem from the reduction
of source code and computation throughout the engine en-
abled by building Warp around the CacheIR. In contrast,
IonBuilder has to track the global type inference data and
requires that all functions track type information even if
it is only useful in very hot functions. With WarpBuilder,
profiling information via CacheIR is used both to (i) optimize
Warp; and (ii) speedup the Baseline Interpreter and Baseline
JIT. Warp does more work off-thread through the Snapshot-
based design, allowing the main thread to make progress
in program execution while compilation occurs. Moreover,
Warp’s design is less prone to overspecialization, leading to
fewer recompilations than in the IonBuilder system. Build-
ing upon WarpBuilder, Firefox 111, which has WarpBuilder
enabled by default, achieves a score 1.44× higher than that
of IonBuilder.
For JetStream running on Firefox 83, enabling Warp-

Builder reduced the score to 0.83× that of IonBuilder. A
substantial fraction of JetStream consists of computational

kernel benchmarks which were excellent targets for the com-
bination of Type Inference system and IonBuilder; these
types of workloads were intentionally de-prioritized during
the development of Warp in lieu of code that more reflected
the state of real websites. Nevertheless, WarpBuilder’s state
as of Firefox 111 improves the JetStream score by 1.10× over
IonBuilder. WarpBuilder’s performance is regained through
developing and applying new inline caches via the CacheIR
system and expanding the support for compiler optimiza-
tions that had yet to be implemented using the CacheIR-
based system instead of the Type Inference-based system.

6 Related Work
According to Deutsch and Schiffman, the key result behind
their Smalltalk-80 implementation isDynamic Change of Rep-
resentation [12]. Under this rubric, JIT compilation (dynamic
translation in their terminology) and Inline Caching are dif-
ferent representations of method dispatch. They introduce a
one-entry IC, generated by their JIT compiler, that starts out
unlinked and is then patched with generated native code con-
taining an updated target. They also discuss inlining small
methods for commonly used selectors such as +. In a sense,
the generated CacheIR for a particular bytecode is an inlined
and type-specialized version of a selector, a dynamic change
of representation similar to Deutsch and Schiffman’s system.
However, Deutsch and Schiffman do not describe a unifying
mechanism underlying their inline caching. Thus, in their
design, optimizations are implemented by hand.
Polymorphic Inline Caches (PICs) were first described in

the context of the SELF language by Hölzle et al. [16]. The
main idea of their PIC scheme is to provide a mechanism
wherein, for polymorphic call sites, instead of overwriting
the call site directly with the address of a single resolved
method, a machine-code stub is created, and the address
of the stub is used inline. Their work is foundational for
PIC support in modern languages systems; the underlying
system outlined in this paper is a clear reflection of the
ideas presented by Hölzle et al. However, unlike CacheIR,
Hölzle et al. scheme does not rely on a specialized IR to
create IC stubs. The presence and architecture of CacheIR in
SpiderMonkey enables high levels of native stub code sharing
that is contingent on an equality check of the IR itself. This
code sharing leads to less frequent stub compilation and
greater memory efficiency to drive inline caches.

In later work, within the context of the SELF language, Höl-
zle et al. describe the use of ICs and PICs to drive compilation
decisions in the runtime system [17]. The insight is that the
SELF PIC scheme could be used as a type-information collec-
tor in addition to accelerating operation sites. By leveraging
this type information they are able to speculatively com-
pile hot functions with potentially stabilized types. CacheIR
builds greatly upon this insight and enables IC stub code
structure to be reached throughout the entire compilation
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pipeline. CacheIR is used as a shared source of truth in the
engine, having prevalent use from the Baseline Interpreter
through to the optimizing Ion compiler providing an efficient
means for stub-code lowering.

LIL [14] is an architecture-independent language for writ-
ing Virtual Machine stubs. Compared to CacheIR, LIL has
a much broader set of responsibilities — it covers many
assembly-code stub responsibilities, such as object allocation
and garbage-collector barriers — and thus supports arith-
metic operations, conditional control flow, multiple calling
conventions and more. LIL is a mechanism for replacing
assembly-written stubs, but it does not appear that LIL is
tightly connected to their IC infrastructure.
The linear intermediate representation CacheIR uses is

akin to a trace, from a tracing JIT compiler, such as Trace-
Monkey or PyPy [6, 13]. Traces have very similar side exit
mechanisms, also called guards where a precondition is re-
quired to proceed further into the trace. However, unlike in
a tracing JIT the failure of a guard in CacheIR simply starts
execution again at the beginning of the next stub. Unlike
a fully developed tracing JIT, CacheIR is constructed incre-
mentally by program developers rather than derived directly
from execution. This is because CacheIR operates at a sub-
bytecode granularity, and as such there is no infrastructure
to collect traces automatically.

Wuthinger et al. [20] introduce Truffle, a framework that
provides a modular, unified infrastructure and architecture
for building dynamic languages VMs. Their architecture en-
ables node rewriting on an AST to specialize execution at
runtime. To enable specialization, Truffle supports polymor-
phic inline caching by expanding a node representing an
IC-supported operation to multiple nodes each specialized
to an observed type. Similar to IC stubs in SpiderMonkey,
Truffle’s IC nodes are chained, connected by an edge repre-
senting the failure path for the preceeding node. However,
the IC scheme in Truffle is more akin to Quickening [8];
rather than backing an IC with dynamically compiled stub
code, a generic VM call is replaced with a specialized VM
call. Thus, unlike WarpBuilder and CacheIR, there is no ab-
straction within Truffle and Graal that enables native code
sharing between ICs.

An independently developed idea similar to Trial Inlining,
called Polyvariance, exists in the JSC JavaScript engine pow-
ering WebKit [3]. The goal of both Trial Inlining and Poly-
variance is to use ICs to specialize polymorphic operations
on a per-call-site basis. Polyvariance works by inlining small
functions when tiering up from the JCS baseline compiler
to the next-tier DFG compiler. These inlined functions have
uninitialized ICs associated with DFG. If DFG detects that
an IC fast path is taken through the inlined function, it fills
in the uninitialized ICs, thus enabling more specialized code
generation in the next, highest tier compiler. Polyvariance
differs from Trial Inlining in a few notable ways. First, Trial
Inlining is an intermediate step between Baseline and Warp

whereas Polyvariance is applied later in JSC’s JIT pipeline.
Thus, SpiderMonkey’s Baseline compiler can detect some of
the benefits of Trial Inlining and preemptively collect more
precise profiling data before tiering up. Second, due to Spider-
Monkey’s IC architecture, Trial Inlining is able to specialize
moderately deep nestings of call sites whereas Polyvariance
is a one-level-deep inlining strategy. Third, Trial Inlining
does not inline, in the sense of function inlining, until tier-
ing up to Warp. Instead, Trial Inlining creates a specialized
set of ICs for a call site, leaving the actual function inlining
decision to Warp.
CacheIR has further utility not discussed in this paper.

Cachet is a domain-specific language intended to help build
a formally verified JIT compiler [19]. In their prototype im-
plementation, they build a CacheIR compiler for Cachet to
help on the road to formal verification for the SpiderMonkey
JIT compilers.

7 Conclusion
This work introduces CacheIR, a novel IC design centered
around an intermediate representation that simplifies IC de-
velopment and enables the reuse of compiled native code
through IR matching. By leveraging CacheIR’s design, this
paper also describes WarpBuilder, a JIT compiler front-end
that generates specialized code by lowering CacheIR. More-
over, Trial Inlining extends the inline caching system for
context-sensitive IC inlining through the power of CacheIR.
In SpiderMonkey, the combination of CacheIR and Warp-
Builder has proven to be a beneficial design by significantly
improving performance and reducing security risks.
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